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Tailored mixing inside individual droplets could be useful to ensure that reactions within microscopic
discrete fluid volumes, which are used as microreactors in “digital microfluidic” applications, take place in a
controlled fashion. In this paper we consider a translating spherical liquid drop to which we impose a time
periodic rigid-body rotation. Such a rotation not only induces mixing via chaotic advection, which operates
through the stretching and folding of material lines, but also offers the possibility of tuning the mixing by
controlling the location and size of the mixing region. Tuned mixing is achieved by judiciously adjusting the
amplitude and frequency of the rotation, which are determined by using a resonance condition and following
the evolution of adiabatic invariants. As the size of the mixing region is increased, complete mixing within the
drop is obtained.
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I. INTRODUCTION

Droplets have been proposed as an alternative to standard
fluid-stream microfluidics for lab-on-a-chip applications.
This microfluidics approach, also referred to as “digital” be-
cause it uses “discrete” fluid volumes �droplets� rather than
continuous streams, holds great promise due to the possibil-
ity of using single droplets as microreactors �1�. Efficient
mixing, however, is needed for reactions to occur, but re-
mains difficult to achieve because the Reynolds number �Re�
is usually very small and so the flow is laminar. This issue
has recently attracted much attention in the literature. For
flows in microchannels, while there are many strategies
based on altering the channel geometry, the use of forcing
alone �see, e.g., Refs. �2–6�� has also proved to be efficient,
especially in the case of low Re �7�. The combination of both
geometry alteration and forcing has been explored as well
�7–10�. For droplet-based microfluidics, the forcing alone is
the preferred strategy as the deformation of the droplet is
difficult to control. In almost all cases, the enhancement of
mixing in miniature geometries is based on chaotic advec-
tion, the stirring phenomenon that stretches and folds fluid
elements thus increasing the interfacial area between the two
fluids to be mixed. Chaotic advection inside a liquid drop
subjected to a forcing �at low Re� has been studied exten-
sively �11–17� and was obtained experimentally by means of
oscillatory flows �18,19�. In this letter, we focus on
unsteady—yet periodic—forcing.

From a dynamical systems viewpoint, the introduction of
a time-dependent perturbation or forcing breaks the invari-
ants �related to the symmetries of the unperturbed system�,
thus introducing resonances between the natural frequencies
of the unperturbed problem and the frequency�ies� of the
forcing. Although such resonances create chaotic regions
where mixing occurs, in general, chaotic and regular regions
coexist and unexpected regular sizable pockets persist.

In many situations where it is indeed possible to create
chaos, controlling the mixing region�s� remains a challenge.

Such a control, however, should be possible since a chaotic
system is sensitive to changes in parameter values �as it is to
changes in initial conditions�. These changes should generi-
cally modify the resonances, and thus the location and size of
the chaotic regions.

Our general approach along these lines is to consider a
bounded three-dimensional �3D� flow, which is the superpo-
sition of an integrable flow v0 with at least one invariant and
a small time-dependent perturbation �v1�x , t�, 0���1. If v0
has only one invariant, the phase space contains two-
dimensional tori. In this case, the perturbed flow, ẋ=v0�x�
+�v1�x , t�, has poor mixing properties if the amplitude of the
perturbation � is small, since two-dimensional �2D� tori act
as barriers to chaotic diffusion �e.g., Ref. �20��. If, on the
other hand, v0 has two invariants, trajectories of this inte-
grable flow are all periodic. Most of these periodic orbits are
expected to be broken by a generic perturbation v1 with an
arbitrarily small amplitude �. Efficient mixing properties
might then be obtained with such perturbed flows. In this
work, we consider an axisymmetric integrable flow possess-
ing two invariants, thus possibly offering efficient mixing
properties after being perturbed.

While many previous works �11,12,21,22� have shown the
existence of chaotic behavior in 3D bounded steady flows,
we turn our attention to unsteady flows; the added unsteadi-
ness targets the control of the chaotic behavior through reso-
nance phenomena �17,23,24�. Specifically, we seek to create
a mixing zone of tunable size that remains localized within a
well-defined region of the drop. This should also provide a
rationale for the route to complete mixing as the perturbation
increases.

II. MODEL

A. Flow equation and assumptions

We consider a spherical Newtonian drop immersed in an
incompressible Newtonian flow in the case where the linear
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external field is characterized by translational velocity and
vorticity vectors, similarly to Ref. �12�. As in the latter ref-
erence, we assume that the local Re is much smaller than one
and that the interfacial tension is sufficiently large for the
drop to remain spherical.

The internal velocity field is obtained by solving the
Stokes flow problem for both the internal and external flows
satisfying the continuity of velocity and tangential stress
conditions across the drop surface. In addition, we introduce
unsteadiness in the problem by making the vorticity time
dependent. In a Cartesian coordinate system translating with
the center-of-mass velocity of the drop, and with the z axis in
the direction of the translation, the paths of passive marker
particles are given by the solution of the nonautonomous
dynamical system

u = ẋ = zx − a�t��zy ,

v = ẏ = zy + a�t���zx − �xz� , �1�

w = ż = �1 − 2x2 − 2y2 − z2� + a�t��xy ,

where all lengths and velocities have been non-
dimensionalized by the drop radius and the magnitude of the
translational velocity. Here, the vorticity is defined by
�= ��x ,�y ,�z�= �1 /�2,0 ,1 /�2�, the unitary vector corre-
sponding to the axis of rotation, and a�t�=� /2�1+cos �t�,
characterized by the frequency � and the amplitude �. In this
paper, we consider only small amplitudes, i.e., 0���1.
Note that the former equations are identical to those in Ref.
�12� except that the constant vorticity vector has been re-
placed by a�t��. This can be done by either assuming un-
steady vorticity in the external flow field, or by applying a
time-dependent body force. In practice, this could be real-
ized, e.g., by creating a time-dependent swirl motion in the
external flow or by applying an electric field that exerts a
torque on the drop �e.g., Ref. �25� or work on electrorota-
tion�. This flow is the superposition of a Hill’s vortex and an
unsteady rigid body rotation. Note that the surface of the
drop r2=x2+y2+z2=1 is invariant under flow �1�.

B. Integrable case

We now discuss some features of the unperturbed axisym-
metric �2D� flow ��=0�. The flow possesses two independent
integrals of motion, e.g., the stream function � and the azi-
muthal angle �:

� = 1/2�2�1 − r2�, � = arctan y/x , �2�

where �2=x2+y2 and �� �0,1 /8�. The streamlines of the
unperturbed system are lines of constant � and �, denoted by
��,�, and defined as �1−2�2�2+ �2�z�2=1−8� �see Fig. 1�.
Almost all streamlines are closed curves surrounding a circle
of degenerate elliptic fixed points ��=1 /�2,z=0�. In addi-
tion, there are two hyperbolic fixed points located at the
poles of the sphere which are connected by heteroclinic or-
bits. The frequency of the motion on ��,� is given by

2	


���
= �

−	/2

	/2 �2d�

�1 + ����sin �
=

2�2
�1 + �

K�� 2�

1 + �
� ,

�3�

where ����=�1−8� and K is the complete elliptic function
of the first kind. The frequency 
 is bounded by two limits

�0�=0 and 
�1 /8�=�2 �see Fig. 1�.

On every streamline ��,�, we introduce a uniform phase 
mod�2	� such that =0 on the x-y plane �with ��1 /�2� and
̇=
���. The unperturbed system, which can be rewritten in
terms of �� ,� ,� as

�̇ = 0, �̇ = 0, ̇ = 
��� ,

belongs to the class of action-action-angle flows.

C. Perturbed case

In the perturbed case 0���1, the time evolution of the
two invariants of the unperturbed system is given by

�̇ = − 2a�t��x� sin � G��,� , �4�

�̇ = a�t��z − a�t��x cos � G��,� ,

where G�� ,�=z /� is 2	 periodic in  and has zero average
in . The time evolution equation for  is

̇ = 
��� + a�t�H��,�,� ,

where H is 2	 periodic in . The dynamics possesses two
time scales, a fast one �of order 1� associated with , and a
slow one �of order 1 /�� associated with � and �.

If 
 and � are incommensurate, then the averaging over

 and over � can be performed independently. In this case,
the time-periodic terms in Eq. �4� average out, and the aver-

aged system reduces to �̇=0, �̇=−� /2. Thus in the averaged
system the value of � is conserved as it was in the unper-
turbed system; in other words, � is an invariant of the aver-
aged system. Each trajectory of the averaged system evolves
on two-dimensional nested tori T�. In the perturbed system,
� is an adiabatic invariant and the motion follows adiabati-
cally the tori T�.

FIG. 1. Streamlines inside the drop �without rotation� and their
frequencies 
��� as given by Eq. �3�.
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III. METHODS AND RESULTS

A. Mixing generation via resonance phenomena

We now turn to the generation of a 3D chaotic mixing
region inside the drop, for which we seek to control both the
location and the size. The strategy used for this purpose is to
bring a chosen family of unperturbed tori T� into resonance
with the perturbation a�t� by adjusting the frequency � to
satisfy the resonance condition

n
��� − � = 0, �5�

for some n�N �see Fig. 1�. For any fixed � we denote by
	
T�n����
n�N� the set of resonant tori T� satisfying Eq. �5�.
Hereafter, we denote the chaotic mixing region generated
around T�1���� by CMR.

B. Control of the mixing

Figures 2 and 3 present Liouvillian sections of the per-
turbed system, which consist of 2D projections of time-
periodic 3D flows by a combination of a stroboscopic map
and a Poincaré section �here, the y=0 plane�. Figure 2 shows

that a perturbation a�t� creates a main 3D CMR around
T�1���� and its location is controlled by varying � according
to Eq. �5�. In what follows, we analyze the location and the
size of the CMR as � and � vary.

For small values of �, all resonances satisfying Eq. �5� are
located near the pole-to-pole heteroclinic connections �at �
=0, near the z axis and near the boundaries of the drop, see
Fig. 2�a��. As � is increased, the CMR penetrates deeper into
the drop �Fig. 2�b��. In the interval 0����2, the CMR is
the largest chaotic region �compared to chaotic regions cor-
responding to higher order resonances n�1�, with all the
other chaotic regions localized close to the z axis and near
the drop boundaries �around the heteroclinic orbits�; this is
due to the shape of 
���. As � is increased further, the CMR
moves toward the location of the elliptic fixed points of the
unperturbed system, closely following the location of the
resonant torus T�1���� �Fig. 2�c��. As the value of � ap-
proaches �2, the CMR shrinks to the circle of elliptic fixed
points �Fig. 5�.

Whereas the frequency � of the rigid body rotation is
mostly responsible for the location of the CMR, it is its am-
plitude � which mostly determines its size. Figure 3 shows
that the size of the chaotic mixing regions created by the
n=1 resonance and by higher order resonances �mostly the
n=2 resonance� increases as the amplitude of the perturba-
tion increases. Around ��0.20, the chaotic regions around
the heteroclinic orbits and the CMR join together to cover
the entire drop volume.

Recall that in the averaged system the adiabatic invariant
� is constant. In the exact system, however, along a given
trajectory starting at �=�0 it varies between �−��0 ;� ,�� and
�+��0 ;� ,��. The width ��=�+��0 ;� ,��−�−��0 ;� ,�� is
small away from the resonance, and increases significantly
closer to the resonance. The projection of three characteristic
trajectories onto the �� ,�� plane �called the slow plane in
dynamical systems� is presented in Fig. 4. The narrow re-
gions on the sides are off-resonance trajectories that stay
quite close to the corresponding tori T�. In between,
the middle trajectory deviates much further from its
T�=T�1���� and fills the entire CMR. The quantity �� is
probably the most convenient quantity to estimate the size of
the CMR �around T�1���� for ���2�. The volume between
the tori T�−��� and T�+��� gives the CMR size in 3D.

The dependence of the size of the CMR �in terms of ���
on � and � is illustrated in Fig. 5. The curves �a�–�d� in the
upper and lower panels correspond to the Figs. 2�a�–2�d� and
3�a�–3�d�, respectively. For a given � value �i.e., for a given
T�1�����, the size can be controlled by adjusting the value
of �; for example, in the range of frequencies
1.181���1.357, the entire droplet exhibits chaotic mixing

FIG. 2. �Color online� Liouvillian sections for the amplitude
�=0.03 and the frequencies �=0.55,0.93,1.28,1.41 �a�–�d�. The
�red� dashed line inside the CMR is the torus T�1�.

FIG. 3. �Color online� Liouvillian sections for the frequency �
=1.376 and the amplitudes �=0.01,0.05,0.10,0.20 �a�–�d�.

FIG. 4. Projection of three characteristic trajectories on the slow
phase plane, with �0=0 and �0=0.010,0.073,0.125 �here �=0.02
and �=1.28�.
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for ��0.175. For each smaller value of � the size reaches a
maximum for a certain value �m��� of the frequency. On the
one hand, this property can be used as an optimization tech-
nique to obtain the maximal CMR size one can reach for a
given amplitude � of the rotation. On the other hand, ��
versus � increases quite monotonically for all values of �.
The derivation of the maxima locations and estimates of ��
as functions of the parameters and the order of resonance,
will be addressed elsewhere. The structure of the CMR in
our case is rather different from that obtained in other prob-
lems that possess resonance-induced chaotic advection.
Namely, here the size of the CMR vanishes as � goes to 0
and the CMR is confined around the resonance. In contrast,
in the flow considered in, e.g., Ref. �17�, the mixing is

caused by resonances, but the CMR occupies a volume on
the scale of the whole system. The difference comes from the
fact that the averaged change of the frequency of the fast
system vanishes in the current system, thus preventing the
trajectories starting away from the resonance from approach-
ing it. This property makes the kind of flows investigated
here useful as it may be advantageous to localize the mixing
in certain parts of the system only.

IV. CONCLUSION

In summary, we have shown that by applying a judicious
oscillatory rotation to a translating drop �an integrable sys-
tem�, one can create a chaotic mixing zone with a prescribed
location and size. The appropriate values of the parameters
of the perturbation �here, a rotation of a given frequency and
amplitude� are determined by quantitative features of the in-
tegrable case. For any amplitude of the rotation, the fre-
quency optimizing the CMR size has been obtained. Such an
optimization could be useful in guiding the design of practi-
cal mixing devices aiming at the best possible mixing rate
within individual drops.
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FIG. 5. Size of the chaotic mixing region. Upper panel: Normal-
ized �� vs � for the amplitudes �=0.01,0.05,0.10,0.20 �a�–�d�.
Lower panel: Normalized �� vs � for �=0.55,0.93,1.41,1.28
�a�–�d�.
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